
Tutorial on SIC-POVMs: Probability Distributions and
Entanglement Properties

Nithyasri Srivathsan1 and Blake C. Stacey2

1Nanyang Technological University Singapore
2QBism Research Group, University of Massachusetts Boston

(Dated: February 12, 2023)

In this tutorial, we present a hands-on exploration of quantum information theory,
specifically the representation of quantum states by probability distributions for
generalized measurements. This is a rich topic, with many and surprising connections
to other areas, while still being accessible to students with a moderate amount of
coding experience. We find patterns in the probability distributions of selected states
of interest, both pure and mixed, as we explore relationships among their various
properties of entanglement like Shannon entropy, von Neumann entropy, mutual
information, and concurrence using computational and graphical methodologies.

I. BACKGROUND

Now and then, stories will pop up in the news about the latest hot new thing in quantum
computers. If the story makes any attempt to explain why quantum computing is special
or interesting, it often recycles a remark along the lines of, “A quantum bit can be both
0 and 1 simultaneously.” This is rather like saying that Boston is at both the North Pole
and the South Pole simultaneously. Something important has been lost. Our goal in this
introductory section is to develop a mental picture for a qubit, the basic unit that quantum
computers are typically regarded as built out of. To be more precise, we will develop a
mental picture for the mathematics of a qubit, not for how to implement one in the lab.
There are many ways to do so, and getting into the details of any one method would, for
our purposes today, be a distraction. Instead, we will be brave and face the issue on a more
abstract level.

A qubit is a thing that one prepares and that one measures. The mathematics of quantum
theory tells us how to represent these actions algebraically. That is, it describes the set of
all possible preparations, the set of all possible measurements, and how to compute the
probability of getting a particular result from a chosen measurement given a particular
preparation. To do something interesting, one would typically work with multiple qubits
together, but we will start with a single one. And we will begin with the simplest kind
of measurement, the binary ones. A binary test has two possible outcomes, which we can
represent as 0 or 1, “plus” or “minus”, “ping” and “pong”, et cetera. In the lab, this could
be sending an ion through a magnetic field and registering whether it swerved up or down;
or, it could be sending a blip of light through a polarizing filter turned at a certain angle
and registering whether there is or is not a flash. Or any of many other possibilities! The
important thing is that there are two outcomes that we can clearly distinguish from each
other.

For any physical implementation of a qubit, there are three binary measurements of
special interest, which we can call the X test, the Y test and the Z test. Let us denote the
possible outcomes of each test by +1 and −1, which turns out to be a convenient choice.
The expected value of the X test is the average of these two possibilities, weighted by the

http://www.physics.umb.edu/Research/QBism/


2

probability of each. If we write P (+1|X) for the probability of getting the +1 outcome given
that we do the X test, and likewise for P (−1|X), then this expected value is

x = P (+1|X) · (+1) + P (−1|X) · (−1). (1)

Because this is a weighted average of +1 and −1, it will always be somewhere in that interval.
If for example we are completely confident that an X test will return the outcome +1, then
x = 1. If instead we lay even odds on the two possible outcomes, then x = 0. Likewise,

y = P (+1|Y ) · (+1) + P (−1|Y ) · (−1), (2)

and
z = P (+1|Z) · (+1) + P (−1|Z) · (−1). (3)

To specify the preparation of a single qubit, all we have to do is pick a value for x, a
value for y and a value for z. But not all combinations (x, y, z) are physically allowed. The
valid preparations are those for which the point (x, y, z) lies on or inside the ball of radius
1 centered at the origin:

x2 + y2 + z2 ≤ 1. (4)
We call this the Bloch ball, after the physicist Felix Bloch (1905–1983). The surface of
the Bloch ball, at the distance exactly 1 from the origin, is the Bloch sphere. The points
where the axes intersect the Bloch sphere — (1, 0, 0), (−1, 0, 0), (0, 1, 0) and so forth — are
the preparations where we are perfectly confident in the outcome of one of our three tests.
Points in the interior of the ball, not on the surface, imply uncertainty about the outcomes
of all three tests. But look what happens: If Alice is perfectly confident of what will happen
should she choose to do an X test, then her expected values y and z must both be zero,
meaning that she is completely uncertain about what might happen should she choose to
do either a Y test or a Z test. There is an inevitable tradeoff between levels of uncertainty,
baked into the shape of the theory itself.

We are now well-poised to improve upon the language in the news stories. The point
that specifies the preparation of a qubit can be at the North Pole (0, 0, 1), the South Pole
(0, 0,−1), or anywhere in the ball between them. We have a whole continuum of ways to be
intermediate between completely confident that the Z test will yield +1 (all the way north)
and completely confident that it will yield −1 (all the way south).

Now, there are other things one can do to a qubit. For starters, there are other binary
measurements beyond just the X, Y and Z tests. Any pair of points exactly opposite each
other on the Bloch sphere define a test, with each point standing for an outcome. The closer
the preparation point is to an outcome point, the more probable that outcome. To be more
specific, let’s write the preparation point as (x, y, z) and the outcome point as (x′, y′, z′).
Then the probability of getting that outcome given that preparation is

P = 1
2(1 + xx′ + yy′ + zz′). (5)

An interesting conceptual thing has happened here. We have encoded the preparation
of a qubit by a set of expected values, i.e., a set of probabilities. Consequently, all those
philosophical debates over what probability means will spill over into the arguments about
what quantum mechanics means. Moreover, and not unrelatedly, we can ask, “Why three
probabilities? Why is it the Bloch sphere, instead of the Bloch disc or the Bloch hyper-
sphere?” It would be perfectly legitimate, mathematically, to require probabilities for only



3

FIG. 1: Bloch ball, with the center point and the points where the axes intersect the outer sphere
marked with dots

two tests in order to specify a preparation point, or to require more than three. That would
not be quantum mechanics; the fact that three coordinates are needed to nail down the
preparation of the simplest possible system is a structural fact of quantum theory. But is
there a deeper truth from which that can be deduced?

One could go in multiple directions from here: What about tests with more than two
outcomes? Systems composed of more than one qubit? Very quickly, the structures involved
become more difficult to visualize, and familiarity with linear algebra — eigenvectors, eigen-
values and their friends — becomes a prerequisite. People have also tried a variety of
approaches to understand what quantum theory might be derivable from. Any of those top-
ics could justify something in between a blog post and a lifetime of study. In the following
sections, we will take the path of using linear algebra to study quantum theory, with the aid
of Python to automate some computations.

II. 1-QUBIT STATES

We begin by re-expressing what we covered above in more algebraic language, giving
a lightning review of the quantum theory of 1-qubit systems. The preparation of such a
system is encoded by a density matrix, a 2 × 2 matrix of complex numbers that satisfies
three conditions. First, its trace is equal to 1; second, it is equal to its own conjugate
transpose; and third, all of its eigenvalues are nonnegative. Such matrices are also known
as quantum states. A state ρ is pure if ρ = ρ2; otherwise, it is mixed.

A measurement on a qubit system is represented by a positive operator-valued measure,
or POVM. A POVM is a set of matrices, one for each possible outcome of the measurement.



4

Like density matrices, each matrix in a POVM must be equal to its own conjugate transpose,
and all of its eigenvalues must be nonnegative. Finally, the set of matrices making up the
POVM must sum to the identity matrix. If this set is {E1, . . . , En}, for example, then

n∑
j=1

Ej = I. (6)

To calculate the probability of a particular measurement outcome given a quantum state,
one uses the Born rule:

p(Ei) = tr(ρEi). (7)
All of the above will actually apply to quantum states of any dimension, that is, to d× d

density matrices for any value of d ≥ 2. However, focusing on d = 2 provides a convenient
starting point. Any 1-qubit density matrix can be written in the form

ρ = 1
2(I + xσx + yσy + zσz), (8)

where σx, σy and σz are the Pauli matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i −1

)
, σz =

(
1 0
0 −1

)
. (9)

The coefficients x, y and z are real numbers that obey the condition

x2 + y2 + z2 ≤ 1. (10)

Consequently, any qubit density matrix ρ can be represented by a point (x, y, z) within a
ball of radius 1, the Bloch ball we introduced earlier. Points on the surface of the Bloch ball
correspond to pure states, while those on the interior correspond to mixed states.

Each of the Pauli matrices has two eigenvectors with eigenvalues ±1. For example, the
eigenvectors of σz are (

1
0

)
,

(
0
1

)
. (11)

We can construct the projection operators that project vectors onto these by taking their
products with their conjugate transposes:(

1
0

)(
1 0

)∗
=
(

1 0
0 0

)
, (12)

and likewise, (
0
1

)(
0 1

)∗
=
(

0 0
0 1

)
. (13)

These are both valid density matrices, with Bloch-ball coordinates (0, 0, 1) and (0, 0,−1)
respectively. By the same logic, the eigenvectors of σx correspond to the points (±1, 0, 0),
and the eigenvectors of σy correspond to the points (0,±1, 0). Together, these six points are
the vertices of a regular octahedron inscribed in the Bloch ball.



5

Another interesting set of states is obtained by inscribing a regular tetrahedron in the
Bloch ball instead. A convenient choice of coordinates is the following:

π0 = 1
2(I + 1√

3
(σx + σy + σz)), (14)

π1 = 1
2(I + 1√

3
(σx − σy − σz)), (15)

π2 = 1
2(I + 1√

3
(−σx + σy − σz)) (16)

π3 = 1
2(I + 1√

3
(−σx − σy + σz)). (17)

The sum of these four density matrices is just twice the identity matrix:
3∑

i=0
πi = 2I. (18)

So, to make these quantum states into a POVM, it is necessary to scale them down by a
factor of 2. This way, we get 4 operators,

Ei = 1
2πi, (19)

whose sum ∑
Ei is naturally the identity, I. The POVM is then simply the array of the 4

elements, {E0, E1, E2, E3}.

III. PROBABILITY DISTRIBUTIONS OF PAULI EIGENSTATES

Now that we’ve successfully constructed the SIC-POVM, we can delve into the world of
probabilistic representation that it opens up. All we need is the Born rule,

Pi = tr(Eiρ). (20)

We can now construct scatter plots for all six Pauli eigenstates.



6



7

One thing is very evident — we observe a similar up-down pattern in their probability
distributions. Each distribution seems to have only two distinct values, and all the distri-
butions look like permutations of each other. We can get a sense for why this ought to
be the case by noting that, if ρ is any Pauli eigenstate, and σj is any of the three Pauli
matrices, then trρσj will either be 0, +1, or −1. In the notation of the introduction, these
traces-of-products are the expected values x, y and z:

x = trρσx, y = trρσy, z = trρσz. (21)
So, the probabilities for our SIC outcomes are

P (0) = 1
4(1 + 1√

3
(x+ y + z)), (22)

P (1) = 1
4(1 + 1√

3
(x− y − z)), (23)

P (2) = 1
4(1 + 1√

3
(−x+ y − z)) (24)

P (3) = 1
4(1 + 1√

3
(−x− y + z)). (25)



8

These formulas work for any point (x, y, z) in the Bloch ball. (It’s a bit of algebra to verify
them, but they work out rather prettily, and the calculation is very worth doing!) When
our density matrix is a Pauli eigenstate, two of the coordinates will be 0, and the other will
be either +1 or −1.

IV. WERNER STATES

Mathematically, we can define Werner states as bipartite quantum states that do not
change when an arbitrary unitary transformation is applied to each part:

ρ = (U ⊗ U)ρ(U † ⊗ U †). (26)

Werner states are of conceptual interest, because they can exhibit quantum entanglement,
yet the statistics they imply for measurement outcomes admit explanation in terms of local
hidden variables. We refer to Werner’s original paper for further discussion on this point [1].
In this section, we’ll focus on 2-qubit Werner states, their construction, probability distri-
bution, and their properties of entanglement.

A. Construction of Joint-POVM

In order to find a probabilistic representation of 2-qubit states, we need a 2-qubit reference
POVM. There are many possibilities, but one easy choice is to build one out of a single-qubit
SIC [2]. The matrices for our new POVM are tensor products of the matrices that we used
before:

Eij = Ei ⊗ Ej. (27)

B. Probability Distribution

We, first, construct the Werner density matrix ρ using the formula:

ρ = I

4λ+ (1− λ)
∣∣∣ψ−〉〈ψ−∣∣∣. (28)

Here, we are using |ψ−〉 to denote the Bell state
∣∣∣ψ−〉 = 1√

2
(|z+〉 ⊗ |z−〉 − |z−〉 ⊗ |z+〉). (29)

Then, the probability distribution can then be obtained by iterating over the POVM elements
and applying the Born rule. We shall now see an example case of probability distribution
with the parameter λ = 0.



9

A similar up-down pattern is evident. We can try this for other values of λ within the
interval [0, 1], and we will observe a similar pattern except in the case where λ = 1, since
that is the garbage state 1

4I.

V. PROPERTIES OF ENTANGLEMENT

Having explored the world of probability distributions, this is a good time to stop ask
ourselves if these probabilities relate to the physical properties of entanglement and further
investigates plausible relationships.

A. Shannon Entropy

The first property of entanglement we shall investigate is the Shannon entropy.
Shannon entropy is a common and useful way of quantifying how “spread out” a proba-

bility distribution is. For a probability distribution P (i), the Shannon entropy (also called
the Shannon information and the Shannon index) is

H = −
∑

P (i) logP (i). (30)

The logarithm can be taken to any base, though 2 and e are the most typical; changing
the base just multiplies H by a constant. One little nuance here is the negative sign. Why
include it? Well, any P (i) will be a number in the interval 0 ≤ P (i) ≤ 1, and so the logarithm
of P (i) will be negative or zero. So, putting a minus sign in front of the whole sum gives us
a nonnegative final answer. (If P (i) is ever zero, we declare that P (i) logP (i) = 0.)

How big and small can the Shannon entropy be? For example, can the Shannon entropy
ever be zero? Indeed it can. Suppose that our probability distribution is P (1) = 1 and



10

P (i) = 0 for all other values of i. Then every term in the sum will be zero, and so the
Shannon entropy will be zero, indicating that the probability distribution is not spread out
at all. What if, instead, the probability distribution is as spread out as possible? That is,
suppose P (i) = 1/n for all n possible values of i. Then

H = −
n∑

i=1

( 1
n

)
log

( 1
n

)
= − log

( 1
n

)
= log n. (31)

We can apply the Shannon entropy to the probability distributions that represent Werner
states by calculating H for a sequence of values of λ in the range [0, 1]. When λ = 0, we have
the minimum value H ≈ 2.485 and when λ = 1, we have the maximum value H ≈ 2.772.

The parabolic relationship between λ and Shannon entropy indicates that as λ increases,
the state becomes more completely mixed.

As we go from λ = 0 to λ = 1, we see a steep increase in the shannon entropy which
shows that data is spreading out more and in terms of entanglement, we see that the states
and getting more and more entangled, with the λ = 1 being the garbage state.

B. Mutual Information

In probability theory, mutual information is the measure of how much one random variable
tells about an other. We can define it by the following formula:

M =
∑

x

∑
y

P (x, y) log P (x, y)
P (x)P (y) . (32)

P (x) and P (y) are known as the marginal distributions of P (x, y).
Like in the case of Shannon entropy, we track of the individual values of mutual informa-

tion for each probability distribution for each value of λ in an array, and then we plot the
results against the values of λ.



11

The parabolic relationship between λ and mutual information indicates that as λ increases,
the result of a measurement upon one half of the two-qubit pair becomes less informative
about what the result of a measurement upon the other half might be.

C. Concurrence

Concurrence is a measure of quantum entanglement [3]. Algorithmically, concurrence for
a 2-qubit density matrix ρ can be computed by first finding the new matrix

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), (33)
where ρ∗ is the matrix made by complex-conjugating each entry of ρ. Let ei be the eigen-
values, in decreasing order, of ρ̃. Then the concurrence of ρ is

C = max([0,√e3 −
√
e2 −

√
e1 −

√
e0]). (34)

A similar algorithm to the previous two cases can be used to create an array of values of
concurrence for each value of λ which we then use to plot against λ.



12

As λ increases, the states become more and more entangled. Looking carefully, we see
a short lasting linear relationship between the two variables for λ = [0, 0.02] which then
progresses into a parabolic curve. This is in line with the fact that at λ = 0, the states are
completely unentangled and are most separable at this stage. This slowly changes as we
approach a value > 0.02.

D. Von Neumann Entropy

Von Neumann entropy is different from Shannon entropy in that its input is a density
matrix instead of probabilities:

S(ρ) = −trρ log ρ. (35)
Equivalently, the von Neumann entropy can be calculated as the Shannon entropy of the
eigenvalues of ρ. This suggests a question: How does the von Neumann entropy compare
against the Shannon entropy of a probabilistic representation of a quantum state? We can
get a taste of this by using Werner states and looping over λ as before. First, as λ increases,
there’s a steep increase in the value of von Neumann entropy.

Until this point, we’ve investigated the various properties of entanglement and their
relationships with λ. Now is a good point to think if the properties themselves are related
to each other and in what way. For example, we can notice that Shannon entropy increases
almost linearly with a slight steep when we plot it along von Neumann entropy.



13

Next, we find that as Shannon entropy increases, concurrence falls. One intricate feature
of the graph to note here is the plateau in the curve from at the lower right. The Shannon
entropy of the probabilistic representation of a Werner state is sensitive to changes in the λ
parameter which do not register when we look at the concurrence.

Next, we can see that that mutual information and concurrence grow together over most
of the range of λ. Again, we see that in the region where the concurrence is always zero, the
mutual information still varies.



14

VI. DISCUSSION

Probabilistic representations of quantum states are a topic on the research frontier, yet
interesting features of them can be computed with just a little code. Further patterns may
yet arise when considering quantum states for three or more qubits, and generalizations of
mutual information to higher-order relationships [4].

VII. EXAMPLE CODE

This code was written in Python version 3.8, using the NumPy 1.17 and Matplotlib 3.1
code libraries.
from numpy import ∗
from numpy . l i n a l g import ∗
from pylab import ∗

def matr ix_to_probab i l i t i e s ( rho , reference_POVM ) :
# conver t the g iven d e n s i t y matrix rho in to a p r o b a b i l i t y v e c t o r
return [ (R ∗ rho ) . t r a c e ( ) [ 0 , 0 ] . r e a l for R in reference_POVM ]

def bloch_coordinates_to_matrix ( coo rd ina t e s ) :
# turn the g iven coord ina t e s in t o a 2−by−2 d e n s i t y matrix
return (1/2) ∗ ( I

+ coo rd ina t e s [ 0 ] ∗ sigma_x
+ coo rd ina t e s [ 1 ] ∗ sigma_y
+ coo rd ina t e s [ 2 ] ∗ sigma_z )

def Shannon_entropy ( p r o b a b i l i t i e s ) :
# f i n d the Shannon entropy ( in nats ) o f the g iven p r o b a b i l i t y v e c t o r
return −sum( [ p ∗ l og (p) for p in p r o b a b i l i t i e s i f p > 0 . 0 ] )



15

def von_Neumann_entropy ( rho ) :
# c a l c u l a t e the von Neumann entropy o f the g iven d e n s i t y matrix
e i g v a l s = [ x . r e a l for x in e i g ( rho ) [ 0 ] ]
return Shannon_entropy ( e i g v a l s )

def concurrence ( rho ) :
# f i n d the concurrence o f the g iven two−q u b i t d e n s i t y matrix
rho_star = rho . conj ( )
YY = kron ( sigma_y , sigma_y )
rho_t i lde = YY ∗ rho_star ∗ YY
e i g v a l s = [max( [ x . r ea l , 0 . 0 ] ) for x in e i g ( rho_t i lde ∗ rho ) [ 0 ] ]
root_vals = [ sq r t ( x ) for x in e i g v a l s ]
root_vals . s o r t ( )
root_vals . r e v e r s e ( )
root_sum = root_vals [ 0 ] − root_vals [ 1 ] − root_vals [ 2 ] − root_vals [ 3 ]
i f root_sum > 0 :

return root_sum
else :

return 0 .0

# d e f i n e the b a s i c matr ices t h a t we ’ l l be working wi th r e p e a t e d l y
I = eye (2 )
sigma_x = matrix ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
sigma_y = matrix ( [ [ 0 , −1 j ] , [ 1 j , 0 ] ] )
sigma_z = matrix ( [ [ 1 , 0 ] , [ 0 , −1] ] )

# make a q u b i t SIC
SIC_coordinates = [ ( 1 , 1 , 1) / sq r t ( 3 ) ,

(1 , −1, −1) / sq r t ( 3 ) ,
(−1 , 1 , −1) / sq r t ( 3 ) ,
(−1 , −1, 1) / sq r t ( 3 ) ]

qubit_SIC = [ ( 1 / 2 ) ∗ bloch_coordinates_to_matrix ( coo rd ina t e s )
for coo rd ina t e s in SIC_coordinates ]

# f i n d the p r o b a b i l i s t i c r e p r e s e n t a t i o n o f the Pau l i e i g e n s t a t e s
# f i r s t , make a d i c t i o n a r y to pa i r t h e i r names wi th t h e i r Bloch
# coord ina t e s
pau l i_e i g en s t a t e s = { " Plus−Z" : (0 , 0 , 1 ) ,

"Minus−Z" : (0 , 0 , −1) ,
" Plus−X" : (1 , 0 , 0 ) ,
"Minus−X" : (−1 , 0 , 0 ) ,
" Plus−Y" : (0 , 1 , 0 ) ,
"Minus−Y" : (0 , −1, 0)}

# now , loop over them
for name , coo rd ina t e s in pau l i_e i g en s t a t e s . i tems ( ) :



16

rho = bloch_coordinates_to_matrix ( coo rd ina t e s )
p r o b a b i l i t i e s = matr ix_to_probab i l i t i e s ( rho , qubit_SIC )
p lo t ( range ( 4 ) , p r o b a b i l i t i e s , " bo " )
x t i c k s ( range ( 4 ) )
x l ab e l ( "Measurement␣Outcome " )
y l ab e l ( " P robab i l i t y " )
t i t l e (name + " ␣ Eigens ta te " )
show ( )

# now , on to tensor product s and entanglement
# we need a j o i n t POVM f or a r e f e r ence measurement
tensorhedron_POVM = [ ]
for i in range ( 4 ) :

for j in range ( 4 ) :
tensorhedron_POVM . append ( kron ( qubit_SIC [ i ] , qubit_SIC [ j ] ) )

# l e t ’ s make a B e l l s t a t e
z_plus = matrix ( [ [ 1 ] , [ 0 ] ] )
z_minus = matrix ( [ [ 0 ] , [ 1 ] ] )
ps i_Be l l = ( kron ( z_plus , z_minus ) − kron ( z_minus , z_plus ) ) / sq r t (2 )
rho_Bell = ps i_Be l l ∗ ps i_Be l l .H

# . . . and f i n d i t s p r o b a b i l i s t i c r e p r e s e n t a t i o n
p r ob ab i l i t i e s_Be l l = matr ix_to_probab i l i t i e s ( rho_Bell ,

tensorhedron_POVM)
p lo t ( range ( 16 ) , p r obab i l i t i e s_Be l l , " bo " )
x t i c k s ( range ( 16 ) )
x l ab e l ( "Measurement␣Outcome " )
y l ab e l ( " Probab i l i t y " )
t i t l e ( " Be l l ␣ State " )
show ( )

# l e t ’ s see how the Werner s t a t e s l ook when we f i n d t h e i r p r o b a b i l i s t i c
# r e p r e s e n t a t i o n s
# f i r s t , we cons ider the Shannon entropy
l i s t_of_Shannon_entropies = [ ]
for param_lambda in arange (0 , 1 , 0 . 0 2 ) : # " lambda " i s a Python keyword

# cons t ruc t the Werner s t a t e f o r the g iven parameter va lue
Werner = eye (4 ) ∗ (param_lambda / 4) + (1 − param_lambda ) ∗ rho_Bell
# . . . and f i n d the Shannon entropy o f i t s p r o b a b i l i s t i c r e p r e s e n t a t i o n
p r o b a b i l i t i e s = matr ix_to_probab i l i t i e s (Werner , tensorhedron_POVM)
l ist_of_Shannon_entropies . append ( Shannon_entropy ( p r o b a b i l i t i e s ) )

p l o t ( arange (0 , 1 , 0 . 0 2 ) , l i s t_of_Shannon_entropies )
x l ab e l ( " $\lambda$ " )
y l ab e l ( " Shannon␣Entropy " )
t i t l e ( " $\lambda$␣ ver sus ␣Shannon␣Entropy " )



17

show ( )

# next , we t a c k l e the mutual information , f o r which i t i s h e l p f u l to l a b e l
# the POVM outcomes by a pa i r o f i n d i c e s
l i s t_of_mutual_informat ions = [ ]
for param_lambda in arange (0 , 1 , 0 . 0 2 ) :

Werner = eye (4 ) ∗ (param_lambda / 4) + (1 − param_lambda ) ∗ rho_Bell
p r obab i l i t y_d i c t = {}
for i in range ( 4 ) :

for j in range ( 4 ) :
prob = (Werner ∗ kron ( qubit_SIC [ i ] ,

qubit_SIC [ j ] ) ) . t r a c e ( ) [ 0 , 0 ] . r e a l
i f prob < 0 : # handle f l o a t i n g−po in t e r ro r s

prob = 0
probab i l i t y_d i c t [ ( i , j ) ] = prob

# e v a l u a t e the margina ls
prob_X = [sum( [ p r obab i l i t y_d i c t [ ( i , j ) ] for j in range ( 4 ) ] )

for i in range ( 4 ) ]
prob_Y = [sum( [ p r obab i l i t y_d i c t [ ( i , j ) ] for i in range ( 4 ) ] )

for j in range ( 4 ) ]
# c a l c u l a t e the mutual in format ion
mutual_information = 0 .0
for i in range ( 4 ) :

for j in range ( 4 ) :
prob = probab i l i t y_d i c t [ ( i , j ) ]
i f prob > 0 :

mutual_information += prob ∗ l og ( prob / (prob_X [ i ] ∗ prob_Y [ j ] ) )
l i s t_of_mutual_informat ions . append ( mutual_information )

p l o t ( arange (0 , 1 , 0 . 0 2 ) , l i s t_of_mutual_informat ions )
x l ab e l ( " $\lambda$ " )
y l ab e l ( "Mutual␣ In format ion " )
t i t l e ( " $\lambda$␣ ver sus ␣Mutual␣ In format ion " )
show ( )

# now , l e t ’ s t r y r e l a t i n g t h e s e q u a n t i t i e s to the concurrence
l i s t_o f_concur r ence s = [ ]
for param_lambda in arange (0 , 1 , 0 . 0 2 ) :

Werner = eye (4 ) ∗ (param_lambda / 4) + (1 − param_lambda ) ∗ rho_Bell
l i s t_o f_concur r ence s . append ( concurrence (Werner ) )

p l o t ( arange (0 , 1 , 0 . 0 2 ) , l i s t_o f_concur r ence s )
x l ab e l ( " $\lambda$ " )
y l ab e l ( " Concurrence " )
t i t l e ( " $\lambda$␣ ver sus ␣Concurrence " )
show ( )

p l o t ( l i st_of_Shannon_entropies , l i s t_o f_concur r ence s )



18

x l ab e l ( " Shannon␣Entropy " )
y l ab e l ( " Concurrence " )
t i t l e ( " Shannon␣Entropy␣ ver sus ␣Concurrence " )
show ( )

p l o t ( l i s t_o f_concurrences , l i s t_of_mutual_informat ions )
x l ab e l ( " Concurrence " )
y l ab e l ( "Mutual␣ In format ion " )
t i t l e ( "Mutual␣ In format ion ␣ ver sus ␣Concurrence " )
show ( )

# and the von Neumann entropy
l ist_of_von_Neumann_entropies = [ ]
for param_lambda in arange (0 , 1 , 0 . 0 2 ) :

Werner = eye (4 ) ∗ (param_lambda / 4) + (1 − param_lambda ) ∗ rho_Bell
list_of_von_Neumann_entropies . append (von_Neumann_entropy (Werner ) )

p l o t ( arange (0 , 1 , 0 . 0 2 ) , list_of_von_Neumann_entropies )
x l ab e l ( " $\lambda$ " )
y l ab e l ( " von␣Neumann␣Entropy " )
t i t l e ( " $\lambda$␣ ver sus ␣von␣Neumann␣Entropy " )
show ( )

p l o t ( l i st_of_Shannon_entropies , list_of_von_Neumann_entropies )
x l ab e l ( " Shannon␣Entropy " )
y l ab e l ( " von␣Neumann␣Entropy " )
t i t l e ( " Shannon␣ ver sus ␣von␣Neumann␣Entropy " )
show ( )

[1] R. F. Werner, “Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-
variable model,” Physical Review A 40 (1989), 4277–81.

[2] J. B. DeBrota, C. A. Fuchs and B. C. Stacey, “The varieties of minimal tomographically
complete measurements,” International Journal of Quantum Information 19 (2021), 204005,
arXiv:1812.08762.

[3] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits,” Physical
Review Letters 80 (1998), 2245, arXiv:quant-ph/9709029.

[4] B. C. Stacey, “Multiscale structure of more-than-binary variables,” arXiv:1705.03927 (2017).

https://dx.doi.org/10.1103/PhysRevA.40.4277
https://dx.doi.org/10.1103/PhysRevA.40.4277
https://dx.doi.org/10.1142/S0219749920400055
https://dx.doi.org/10.1142/S0219749920400055
http://arxiv.org/abs/1812.08762
https://dx.doi.org/10.1103/PhysRevLett.80.2245
http://arxiv.org/abs/quant-ph/9709029
http://arxiv.org/abs/1705.03927

	I Background
	II 1-Qubit States
	III Probability Distributions of Pauli Eigenstates
	IV Werner States
	A Construction of Joint-POVM
	B Probability Distribution

	V Properties of Entanglement
	A Shannon Entropy
	B Mutual Information
	C Concurrence
	D Von Neumann Entropy

	VI Discussion
	VII Example Code
	 References

